Analyzing Merger Activity

Tiffany Jiang

Department of Economics University of California, Davis

•	How can text analysis supplement traditional economic understanding $?$
•	Can statistical learning add to economics empirical methods?

- Understanding Mergers
- 2 Empirical Verifications
- 3 Mode
- 4 Data
- 5 Results

- Merger activity definition.
- Coase (1937), Gort (1969), Jovanovic and Rousseau (2001, 2002)
- But what about situations that do not fall in any of these categories?
- Machine learning and big data offers advantages in empirical studies

The Significance of Annual 10-K SEC Filings

- Used by bankers in the past
- Lengthy!

Section	Description		
Item 1 — Business	Recent events, competition, regulations,		
	special operating costs, seasonal factors,		
	labor issues, insurance matters		
Item 1A — Risk Factors	Anything that the company thinks could go wrong		
Item 2 — Properties	Significant properties, physical assets, of the company		
Item 7 – MDA	Management discusses the company in detail		
Item 12	Security Ownership of Certain Beneficial Owners		
	and Management and Related Stockholder Matters		

 Table – Example of 10-K document sections

The Lasso

(Gentzkow, Shapiro, Taddy via Tibshirani)

Note that this is different from unsupervised learning.

- 1 Understanding Mergers
- 2 Empirical Verifications
- Model
- 4 Data
- 5 Results

- Gentzkow and Shapiro (2010)
- Hoberg and Phillips (2010)
- Routledge, Sacchetto, and Smith (2017)

- Understanding Mergers
- 2 Empirical Verifications
- Model
- 4 Data
- 6 Results

Methods

- Bag-of-Words
- tf-idf
- Ridge
- Elastic Net

My final equation looks like this:

$$\hat{\beta} = \arg \max_{\beta} \sum_{n=1}^{N} \log p(y_n|x_n) + \lambda_1 ||\beta||_1 \tag{1}$$

This is a regression problem like any other, except that the high-dimensionality of c_i makes OLS and other standard techniques infeasible. I used the "glm-net" package in R.

Logistic Regression

To model the relationship between p(X) = Pr(Y=1|X) and X, we use the logistic regression :

$$p(y = 1|\mathbf{x}) = \frac{\exp(\beta_0 + \beta^{\tau} x)}{1 + \exp(\beta_0 + \beta^{\tau} x)} = \frac{1}{\exp(-\beta_0 - \beta^{\tau} x)}$$
(2)

Y is the probability that a firm will merge in the subsequent time period between 2014-2017, or the next three years.

- 1 Understanding Mergers
- 2 Empirical Verifications
- 3 Model
- Data
- 5 Results

Observation Count				
Involved in a Merger (Total)	Not Involved (Total)			
5,379	17,073			
Training Observations	Test Observations			
70 percent	30 percent			

I use the entire document in my findings.

Total observations are 22,418 from years 2013-2017.

 $Merger\ events\ are\ drawn\ through\ Thomson\ Reuters'\ SDC\ Platinum\ Database$

Test Data Results

Table 11:

	$Dependent\ variable:$		
	lasso.predict.four		
fourteen y[test]	0.126***		
	(0.009)		
Constant	0.665***		
	(0.008)		
Observations	1,177		
\mathbb{R}^2	0.131		
Adjusted R ²	0.130		
Residual Std. Error	$0.136 \; (\mathrm{df} = 1175)$		
F Statistic	177.062^{***} (df = 1; 1175)		
Note:	*p<0.1; **p<0.05; ***p<0		

Although hypothesis testing breaks down, the accuracy rate is roughly 85 percent!

- Understanding Mergers
- 2 Empirical Verifications
- 3 Model
- 4 Data
- Results

What did the words tell us?

 TABLE – Words Picked by the Lasso

iii	reasonable	director	security	but	chief
-263.634	-21.447	-9.736	-7.983	-4.556	1.599
indicate	controls	disclosures	procedures	registered	disclosure
39.172	44.864	146.363	192.412	390.211	1,648.075

Next Steps

- Finding a firm's uniqueness (or perhaps culture)
- Horizontal and vertical mergers are well defined. What about a situations where it is more "unique", or more unclear of a motive?
- Ex. Amazon and Whole Foods, Intel and Caring.com, Delta Airlines and Refinery Phillips 66

Thanks

Thank you!