TANDON SCHOOL
OF ENGINEERING

NYU

Package iBrokers2 for Real-time
Trading With Interactive Brokers

Jerzy Pawlowski, NYU Tandon School of Engineering
May 17,2019

Executing Real-time Trading Strategies

- Real-time tra.dlng requires running a Real-time Trading via the IB API
programmatic loop.
- Continuous streaming market data is used _ _
Real-time Trading System

to update a trading model.

- The model outputs are used by an order e / .| Streaming Market
management system to place trade orders / Data
via an API.

- The package IBrokers contains R functions CL’:;LTQ (
for downloading live market data via the API
of Interactive Brokers (IB API), and for
placing trade orders to Interactive Brokers. / — Z Trade Order 1

/ Management

- The function iBrokers: :reqRealTimeBars()

downloads live (real-time) OHLC bars of \ /

market data from Interactive Brokers.

- The function IBrokers: :twsOrder() places
trade orders to Interactive Brokers.

2/11

The Package IBrokers for Interactive Brokers

The package IBrokers allows downloading
live market data via the API of Interactive
Brokers (IB API)

The function twsConnect() opens a
connection to the /B APl via the IB Trader
Workstation (TWS).

The function regRealTimeBars() downloads
live (real-time) OHLC bars of market data.

reqRealTimeBars() relies on the functions
eWrapper.RealTimeBars.CSV() and
twsCALLBACK to process real-time market
events (trades and quotes).

The function eWrapper.RealTimeBars.CSV()
creates an eWrapper object designed for
processing OHLC price data.

Install and load package IBrokers

install.packages("IBrokers")

library(IBrokers)

Connect to Interactive Brokers TWS via API

ib_connect <- IBrokers::twsConnect(port=7497)

Define S&P Emini future June 2019 contract

con_tract <- IBrokers::twsFuture(symbol="ES",

exch="GLOBEX", expiry="201906")
Get Llist with instrument information
IBrokers::reqContractDetails(conn=ib_connect,
Contract=con_tract)

Open file connection for data download

file name <- "C:/Develop/data/ib_data/ES_ohlc_ live.csv"

file connect <- file(file_name, open="w")

Download Llive data to file

IBrokers::reqRealTimeBars(conn=ib_connect,
Contract=con_tract, barSize="1",
eventWrapper=eWrapper.RealTimeBars.CSV(1),
file=file_connect)

Close the Interactive Brokers API connection

IBrokers::twsDisconnect(ib_connect)

Close data file

close(file_connect)

3/11

The eWrapper Object

- An eWrapper object consists of a data
environment and handlers (methods) for
formatting and adding new data to the data
environment.

- The function eWrapper() creates a generic
eWrapper object.

- The function eWrapper.RealTimeBars.CSV()
creates an eWrapper object designed for
processing OHLC price data.

- The functionality of package /IBrokers can
easily be extended by writing new eWrapper
objects, designed for processing different
types of data and performing different tasks.

IBrokers::eWrapper()

Y

eWrapper Object

Data

l -
Handlers environment

4/11

Market Event Processing

Market events can be either trade events or

market quotes. Real-time Event Processing

- Streaming market events are processed in a reqRealTimeBars|()
callback loop which runs inside the function]
twsCALLBACK().

) 4

eWrapper() twsCALLBACK()

- The function twsCALLBACK() first creates an
eWrapper object by calling the functon = === = === -———r-—-=--

Y
eWrapper.RealTimeBars.CSV(), and then / /
IB TWS readBin()

passes it to the function processMsg().
'

Callback loop processMsg()

- The function twsCALLBACK () then calls
processMsg() in a callback loop.

- The function processMsg() processes
individual market events by calling the OHLC Data
appropriate eWrapper handlers and saving
the data into the eWrapper environment.

5/11

The trade_wrapper Object

- The functionality of package /Brokers can
easily be extended to trading by writing a
new eWrapper object.

IBrokers2::trade_wrapper()

- The function IBrokers2: :trade_wrapper()
creates a trade_wrapper object (a modified
eWrapper) designed for real-time trading.

Y

- The trade_wrapper data environment
contains buffers for OHLC market data,
trading model parameters, instrument
positions, open trade orders, etc.

trade_wrapper Object

realtimeBars() Data
- The trade_wrapper contains the data handler model_fun() environment

realtimeBars() and the trading model
model fun().

- The function IBrokers2: :trade_wrapper()
can be modified to support different market
instruments and trading models.

6/11

Functions in Package IBrokers2

Most of the functions in package /Brokers2
were derived from those in IBrokers.

IBI"OkeI"SZ: :'tl"ade_r‘ealtime() InltlateS real' Functions in Package IBrokers2
time trading. .
IBr‘oker‘sZ . 'tr‘ade wrapper() creates a IBrokers::reqRealTimeBars() » |Brokers2::trade_realtime() 1

trade_wrapper object, containing the data
handler realtimeBars() and the trading

model model_fun(). h
IBrokers::eWrapper.RealTimeBars.CSV() » IBrokers2::trade_wrapper()

- The function realtimeBars() is a
trade_wrapper handler which updates the
data environment with new data and then
runs the trading model model_fun(). IBrokers::twsCALLBACK() ’—- IBrokers2::call_back()

- model_fun() reruns the trading model using
updated market data, and places trade
orders using IBrokers: :twsOrder().

- The function IBrokers2::call_back()
performs the callback loop.

7/11

Trade Processing Using Package IBrokers2

- Trade processing using package /Brokers2
uses a similar framework to that for
downloading real-time OHLC market data

Real-time Trade Processing

using IBrokers: :reqRealTimeBars(). trade_realtime()
- The main difference is that now trade orders '

are placed to the IB Trader Workstation trads_wrapper() > call_back()

(TWS).

I v l

I) |
readBin() |

|

: |

I I

! |

l

Callback loop processMsg()

Y

8/11

Real-time Trading Using Package /IBrokers2

The function trade_realtime() accepts the # Install and Load package IBrokers2

trade_wrapper() and call_back() functions, devtools::install_github(repo="algoquant/IBrokers2")
and initiates real-time trading. library(IBrokers2)
Define named lists for trading one contract
The OHLC market data arrives from con_tracts <- list(ES=IBrokers2::twsFuture(symbol="ES", exch="GL

trade_params <- list(ES=c(buy_spread=0.75, sell spread=0.75, siz
Open file connection for data download
. . file_names <- "C:/Develop/data/ib_data/ES_ohlc_live.csv"
Every time new data arrives, mOdel_'Fun() file_connects <- lapply(file_names, function(file_name) file(fil
reruns the trading model and places trade # Open the IB connection to TWS
orders using IBrokers: :twsOrder(). ac_count <- "algoquant”
ib_connect <- IBrokers2::twsConnect(port=7497)
Run the trading model (strategy):
IBrokers2::trade_realtime(ib_connect=ib_connect,
Contract=con_tracts,
eventWrapper=IBrokers2: :trade_wrapper(ac_count=ac_count,

Interactive Brokers in 5-second intervals.

The instrument parameters specify the
number of contracts, trade order types, etc.

The trading instruments and their con_tracts=con_tracts,
parameters are specified as lists to allow trade_params=trade_params,
trading multiple instruments file_connects=file_connects,

warm_up=10),

CALLBACK=IBrokers2::call_back,

file=file_connects)
Stop the trading loop by hitting the red STOP button in RStudi
Close the Interactive Brokers API connection
IBrokers: :twsDisconnect(ib_connect)
Close data files
for (file_connect in file_connects) close(file_connect)

simultaneously.

9/11

Future Development of Package /Brokers2

Current state Applications

- The package IBrokers2 is currently an initial - Education and trading competitions: Interactive
proof of concept, rather than a working Brokers has been kind to provide student paper
application. trading accounts, together with market data.

- The package IBrokers2 is derived from the - Crowd-sourced hedge fund: the package
package IBrokers, and is fully backward IBrokers2 could become the foundation for a
compatible with it. system similar to Quantopian.

- All the IBrokers functions and variables are
preserved exactly in /Brokers2, while some
additional functions have been added to
provide functionality for real-time trading.

Future development

- Rewrite critical functions using Rcpp and the
C++ API of Interactive Brokers.

10/11

Thank You

- Many thanks to Jeff Ryan for developing the package IBrokers.
- The package IBrokers2 is available on GitHub:
https://github.com/algoquant/iBrokers2

Contact information
NYU email: jp3900@nyu.edu

LinkedIn profile:
https://www.linkedin.com/in/jerzypawlowski

11/11

