
Early Warnings for Bank Failure

Andrew Nguyen

Federal Reserve Board of Governors, Federal Reserve Bank of
Chicago (Gutierrez, Luo, Tewolde)

The views in this paper and presentation are solely the
responsibility of the authors and do not reflect the views of the
Federal Reserve Bank of Chicago, Federal Reserve Board of

Governors, or the Federal Reserve System.



Background

I The Federal Reserve acts as bank supervisor and regulator
I Bank failure forecasting is an extremely non-linear problem
I We compare logistic regression vs machine learning models
I Use a broad array of explanatory variables:

1. Balance sheet and income statement information (call-report)
2. State-level leading indicators
3. Aggregate failure rate
4. Market information



Main Considerations

I What is the best model?
I Data modelers find this interesting

I We also want to explain results from each model
I Modelers and policymakers care



Data

0

20

40

60

1990 2000 2010

N
um

be
r 

of
 F

ai
le

d 
B

an
ks

In−time/Validation/Out−of−sample

Out−of−time



Results: Model AUC



Linear Probability Models

P(y) = α+ β1x1 + β2x2

I Really easy to explain - we always know β1 explains a one unit
change in x1



Non-linear Models

Consider the logistic regression model

P(y) = 1
1+ e−(α+β1x1+β2x2)

I Not easy to explain - we know that β1eα+β1x1+β2x2

1+eα+β1x1+β2x2 2 explains a
one unit change in x1

Problematic because this relies on the level of x1, x2



Non-linear Models

I No global way to say what effect x1 has on P(y)
I Logistic regression is our simplest non-linear model, what about

something even more complex?
I We have some options!



A Single Tree
I Minimize Gini-impurity

G = pfail ∗ (1 − pfail) + pnotFailed ∗ (1 − pnotFailed)
I How often a randomly chosen element would be incorrectly

labeled if it was randomly labeled according to the model?

NPACRLag4 >= 0.047

NPACRLag4 >= 0.034

age_quarter >= 31

0

0

1

0

0 1 1

yes no



Random Forests (RF)

I Build a bunch of weakly-correlated trees
I The average based on those many trees will significantly reduce

the variance over any single tree

1. Randomly draw a sample with replacement from the original
sample

2. Randomly draw a subset of predictors for each tree
3. Average the prediction over all trees

I How can we do inference on this tree?



Permutation Importance

I Basic idea: drop one feature and re-train, how do our fit
statistics perform now?

I Re-training over and over is prohibitively expensive
I Instead: replace the original feature with noise, and re-run

through prediction



Permutation Importance Plot



Partial Dependence

I For a single observation, hold all but one variable x1 constant
I Record how much Pfail changes as a results of x1
I Repeat this for a sample of observations
I Interpreted as the average partial effect, ¯∆Pfail

∆x1



Partial Dependence Plot



LIME

I Local Interpretable Model-Agnostic Explanations (LIME)
I Uses a series of small linear approximations to approximate the

complex decision function of a neural network
I A model of a model for a single observation



LIME

I For bank i by randomly perturbing the inputs xi
I Estimate a LASSO regression from the perturbed inputs

P(failurei) =
k∑

n=1
x̃i ,nβi ,nωi ,n

I k is chosen by the researcher, and x̃i ,n is chosen by the LASSO
procedure

I The weight ωi ,n is the distance from the original obsevation



LIME Outputs

I For a single observation
I k most important features
I Predictions of NNet probabilities lime_prob
I Contribution of features to lime_prob

I Bank 1

nnet_prob lime_prob intercept equity2assets npacr over89_to_pastdue us_index_us_house_price
0.76 0.61 0.21 0.21 0.27 -0.01 -0.08

I Bank 2

nnet_prob lime_prob intercept equity2assets npacr failureRate ncloan_to_loan
0.85 0.82 0.15 0.21 0.28 -0.01 0.2



LIME: Estimating A NN

library(parsnip)
library(keras)

keras_fit <- logistic_reg() %>%
set_engine("keras"

, epochs = 1000
, batch_size = 32
, act = ’relu’
, hidden_units = 10) %>%

fit(fail ~ ., data = train_data)



LIME: Evaluating Fit

library(lime)

explainer <- lime(
, x = train_data %>% select(-fail)
, model = keras_fit
, bin_continuous = FALSE)

explanation_df <- explain(
x = test_data %>% select(-fail)
, explainer = explainer
, n_labels = 1 # explaining a single
, n_features = 4 # returns top four features
)



Machine Learning Interpretations

Bad:

I None of these techniques is as easy to explain as
linear-regression

I Yet another set of hyperparameters to choose

Good:

I All of the shown techniques are model agnostic
I A maturing software ecosystem


